ПИД регулирование (ЧАСТЬ 3)

Цель нашей компании - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания.

Классический ПИД-регулятор

Простейшая система автоматического регулирования с обратной связью показана на рисунке. В ней блок R называют регулятором (от слова Regulator), P - объектом регулирования (от слова Process), r - управляющим воздействием или уставкой (reference), e - сигналом рассогласования или ошибки (error), u - выходной величиной регулятора, y - регулируемой величиной.

Частный случай ПИД-регулятора - пропорциональный или П-регулятор: u(t)=K·e(t). С помощью П-регулятора можно управлять любым устойчивым объектом, однако он дает относительно медленные переходные процессы и ненулевую статическую ошибку (статическая ошибка e0 - постоянная ошибка в установившемся режиме системы; см. рис. ниже).

С увеличением пропорционального коэффициента K статическая ошибка e0 уменьшается, время нарастания переходного процесса tн уменьшается, перерегулирование σ увеличивается.

Чтобы убрать статическую ошибку в установившемся режиме, в регулятор вводят интегральный канал с коэффициентом усиления Ki, так что:

Такой регулятор называется пропорционально-интегральным или ПИ-регулятором. Интегратор выдает сигнал, пропорциональный накопленной ошибке, поэтому переходный процесс несколько замедляется.

Однако за счет интегрального канала обеспечивается нулевая ошибка e0 в установившемся состоянии при ступенчатом возмущении и ступенчатом изменении задающего сигнала-уставки.

С увеличением коэффициента интегральной составляющей ПИ-регулятора Ki время нарастания переходного процесса tн уменьшается, перерегулирование σ увеличивается, время регулирования tр увеличивается.

Для ускорения переходных процессов добавляют дифференциальный канал с коэффициентом усиления Kd:

(1.01)

Распространена также другая модификация выражения (1.01):

(1.02)

где t - время; K - пропорциональный коэффициент (безразмерный), Ti - постоянная интегрирования (размерность времени) и Td - постоянная дифференцирования (размерность времени) регулятора. Такой регулятор называют ПИД-регулятором.

Регуляторы этого типа очень хорошо зарекомендовали себя в практических задачах. Кроме того, иногда используются ПД-регуляторы (пропорционально-дифференциальные), у которых нет интегрального канала.

Управление по производной – это быстрый способ управления. Сигнал дифференциального канала наиболее важен при изменениях входов и исчезает в установившемся режиме. Он позволяет реагировать не на само увеличение ошибки, а на тенденцию ее изменения, и принять превентивные меры. Главный недостаток дифференциального канала – большое влияние высокочастотных помех, например, шумов измерений.

С увеличением коэффициента дифференциальной составляющей ПИД-регулятора Kd перерегулирование σ уменьшается, время регулирования tр уменьшается.

 

При увеличении коэффициентов

 

Kp

Ki

Kd

Время нарастания tн

Пере- регулирование σ

Время регулирования tр

Статическая ошибка e0

 

- Увеличивается.

- Уменьшается.

- Устраняется.

- Нет определенной тенденции (No definite Trend). Незначительное изменение.

Для устойчивого объекта можно выбрать коэффициенты регулятора опытным путем, выполняя эксперименты с реальным объектом. Предложено несколько методов решения этой задачи, например, правила Зиглера-Никольса (Ziegler J. G. - Nichols N. B.), Коэна-Куна (Cohen O.H. – Coon O.A.) или CHR (Chien K. L. - Hrones J. A. - Reswick J. B.).

Список используемой литературы

  1. Поляков К.Ю., Теория автоматического управления для чайников, Санкт-Петербург, 2008 г.
  2. Востриков А.С., Французова Г.А., Теория автоматического регулирования. 2003 г.
  3. Глушков В.М., Амосов Н.М., Артеменко И.А. Энциклопедия кибернетики. Том 2. Киев, 1974 г.
  4. Теория автоматического управления: Учеб. для вузов по спец. Автоматика и телемеханика. В 2-х ч. Ч. I. Теория линейных систем автоматического управления / Н. А. Бабаков, А. А. Воронов, А. А. Воронова и др.; Под ред. А. А. Воронова.—2-е изд., перераб. и доп. — М.: Высш. шк., 1986. — 367 с.
  5. Денисенко В.В., Энциклопедия АСУ ТП, http://bookasutp.ru/
  6. Dew Toochinda, Scilab Ninja. Control Engineering with Scilab, Scilab Control Engineering Basics, http://scilab.ninja/study-modules/scilab-control-engineering-basics/

Вернуться к списку