ПИД-регулятор ЧАСТЬ 1
В технических характеристиках преобразователя частоты часто указана функция "ПИД-регулирование". О назначении этой характеристики мы попытаемся кратко рассказать в нескольких статьях, что бы при покупке частотного преобразователя имелось полное представление о его возможностях.
Из чего состоит система управления?
В задачах управления всегда есть два объекта – управляемый и управляющий. Управляемый объект обычно называют объектом управления или просто объектом, а управляющий объект – регулятором. Например, при управлении частотой вращения с помощью преобразователя частоты объект управления – это двигатель (электромотор, турбина); в задаче стабилизации курса корабля – корабль, погруженный в воду; в задаче поддержания уровня громкости – динамик.
Регуляторы могут быть построены на разных принципах. Самый знаменитый из первых механических регуляторов – центробежный регулятор Уатта для стабилизации частоты вращения паровой турбины (на рисунке справа). Когда частота вращения увеличивается, шарики расходятся из-за увеличения центробежной силы. При этом через систему рычагов немного закрывается заслонка, уменьшая поток пара на турбину.
Регулятор температуры в холодильнике или термостате – это электронная схема, которая включает режим охлаждения (или нагрева), если температура становится выше (или ниже) заданной.
Во многих современных системах регуляторы – это микропроцессорные устройства, компьютеры. Они успешно управляют самолетами и космическими кораблями без участия человека. Современный автомобиль буквально напичкан
управляющей электроникой, вплоть до бортовых компьютеров.
Обычно регулятор действует на объект управления не прямо, а через исполнительные механизмы (приводы), которые могут усиливать и преобразовывать сигнал управления, например, электрический сигнал может превращаться
в перемещение клапана, регулирующего расход топлива, или в поворот руля на некоторый угол.
Чтобы регулятор мог видеть
, что фактически происходит с объектом, нужны датчики. С помощью датчиков чаще всего измеряются те характеристики объекта, которыми нужно управлять. Кроме того, качество управления можно улучшить, если получать дополнительную информацию – измерять внутренние свойства объекта.
Структура системы управления
Итак, в типичную систему управления входят объект, регулятор (например - частотный преобразователь), привод и датчики. Однако, набор этих элементов – еще не система. Для превращения в систему нужны каналы связи, через них идет обмен информацией между элементами. Для передачи информации могут использоваться электрический ток, воздух (пневматические системы), жидкость (гидравлические системы), компьютерные сети.
Взаимосвязанные элементы – это уже система, которая обладает (за счет связей) особыми свойствами, которых нет у отдельных элементов и любой их комбинации.
Основная интрига управления связана с тем, что на объект действует окружающая среда – внешние возмущения, которые мешают
регулятору выполнять поставленную задачу. Большинство возмущений заранее непредсказуемы, то есть носят случайный характер.
Кроме того, датчики измеряют параметры не точно, а с некоторой ошибкой, пусть и малой. В этом случае говорят о шумах измерений
по аналогии с шумами в радиотехнике, которые искажают сигналы.
Подводя итого, можно нарисовать структурную схему системы управления так:
Например, в системе управления курсом корабля:
- объект управления – это сам корабль, находящийся в воде; для управления его курсом используется руль, изменяющий направление потока воды;
- регулятор – цифровая вычислительная машина;
- привод – рулевое устройство, которое усиливает управляющий электрический сигнал и преобразует его в поворот руля;
- датчики – измерительная система, определяющая фактический курс;
- внешние возмущения – это морское волнение и ветер, отклоняющие корабль от заданного курса;
- шумы измерений – это ошибки датчиков.
Информация в системе управления как бы ходит по кругу
: регулятор выдает сигнал управления на привод, который воздействует непосредственно на объект; затем информация об объекте через датчики возвращается обратно к регулятору и все начинается заново. Говорят, что в системе есть обратная связь, то есть регулятор использует информацию о состоянии объекта для выработки управления. Системы с обратной связью называют замкнутыми, поскольку информация передается по замкнутому контуру.
Как работает регулятор?
Регулятор сравнивает задающий сигнал (задание
, уставку
, желаемое значение
) с сигналами обратной связи от датчиков и определяет рассогласование (ошибку управления) – разницу между заданным и фактическим состоянием. Если оно равно нулю, никакого управления не требуется. Если разница есть, регулятор выдает управляющий сигнал, который стремится свести рассогласование к нулю. Поэтому схему регулятора во многих случаях можно нарисовать так:
Такая схема показывает управление по ошибке (или по отклонению). Это значит, что для того, чтобы регулятор начал действовать, нужно, чтобы управляемая величина отклонилась от заданного значения. Блок, обозначенный знаком ≠, находит рассогласование. В простейшем случае в нем из заданного значения вычитается сигнал обратной связи (измеренное значение).
Можно ли управлять объектом так, чтобы не было ошибки? В реальных системах – нет. Прежде всего, из-за внешних воздействий и шумов, которые заранее неизвестны. Кроме того, объекты управления обладают инерционностью, то есть, не могут мгновенно перейти из одного состояния в другое. Возможности регулятора и приводов (то есть мощность сигнала управления) всегда ограничены, поэтому быстродействие системы управления (скорость перехода на новый режим) также ограничена. Например, при управлении кораблем угол перекладки руля обычно не превышает 30° - 35°, это ограничивает скорость изменения курса.
Мы рассмотрели вариант, когда обратная связь используется для того, чтобы уменьшить разницу между заданным и фактическим состоянием объекта управления. Такая обратная связь называется отрицательной, потому что сигнал обратной связи вычитается из задающего сигнала. Может ли быть наоборот? Оказывается, да. В этом случае обратная связь называется положительной, она увеличивает рассогласование, то есть, стремится раскачать
систему. На практике положительная обратная связь применяется, например, в генераторах для поддержания незатухающих электрических колебаний.